Ask Your Question
0

Robot_localization unexpected behavior for filtered navsat output

asked 2016-04-26 09:31:51 -0500

b2256 gravatar image

updated 2016-04-26 09:33:49 -0500

Getting unexpected output from navsat_transform for /gps/filtered topic after being processed through the ekf filter. Coordinates diverge quickly from /gps/fix input topic very fast (likely due to imu drift) but divergence is mostly in negative z direction.

Project background info: Using robot_localization to fuse gps and imu referencing this Tom Moore answer: http://answers.ros.org/question/20007.. . My setup is the same with a full-size SUV vehicle, Beaglebone Black board, Phidgets imu w/mag, ublox gps, with no odometry sensors. I am running Ubuntu 14.04.4 LTS, deb 4.1.15-ti-rt-r40 armv7l, ros indigo, and robot_localization with the ekf filter. I've calibrated the magnetometer for hard and soft iron on the vehicle and incorporate the factors in the driver. I use an overall launch file that separately calls the devices and robot_localization. REP's 103 and 105 were adhered to with the imu (as far as I can tell), since the raw mag points (X) east at zero and the other checks (Y and Z) work out. Declination is accounted for in the navsat_transform launch file. Navsat and Ekf launch files:

<!-- Launch file for navsat_transform_node -->

<launch>

<node pkg="robot_localization" type="navsat_transform_node" name="navsat_transform_node" respawn="true" output="screen">

  <!-- Frequency of the main run loop. -->
  <param name="frequency" value="32"/>
  <param name="delay" value="0"/>
  <param name="magnetic_declination_radians" value="-0.206996"/>
  <param name="yaw_offset" value="0.0"/>
  <param name="zero_altitude" value="false"/>
  <param name="broadcast_utm_transform" value="false"/>
  <param name="publish_filtered_gps" value="true"/>
  <param name="use_odometry_yaw" value="false"/>
  <param name="wait_for_datum" value="false"/>
  <!-- Placeholders for input remapping. Set your topic names as the "to" values.  -->
         <remap from="/imu/data" to="/imu/data"/>
         <remap from="/odometry/filtered" to="/odometry/filtered"/>
         <remap from="/gps/fix" to="/gps/fix"/>

  <!-- Placeholders for output remapping.        -->

         <remap from="/odometry/gps" to="/odometry/gps"/>
         <remap from="/gps/filtered" to="/gps/filtered"/>
</node>

</launch>`

ekf_localization launch file:

<!-- Launch file for ekf_localization_node -->

<launch>

<node pkg="robot_localization" type="ekf_localization_node" name="ekf_localization" clear_params="true">

  <!-- ======== STANDARD PARAMETERS ======== -->

  <param name="frequency" value="32"/>
  <param name="sensor_timeout" value="0.05"/>
  <param name="two_d_mode" value="false"/>
  <param name="map_frame" value="map"/> 
  <param name="odom_frame" value="odom"/>
  <param name="base_link_frame" value="base_link"/>
  <param name="world_frame" value="odom"/>
  <param name="transform_time_offset" value="0.0"/>
  <param name="odom0" value="/odometry/gps"/>
  <param name="imu0" value="/imu/data"/>

  <rosparam param="odom0_config">[true, true, true,
                                  false, false, false,
                                  false,  false, false,
                                  false, false, false,
                                  false, false, false]</rosparam>

  <rosparam param="imu0_config">[false, false, false,
                                 true,  true,  true,
                                 false, false, false,
                                 true,  true,  true,
                                 true,  false,  true]</rosparam>
  <param name="odom0_differential" value="true"/>
  <param name="imu0_differential" value="false"/>
  <param name="odom0_relative" value="false"/>
  <param name="imu0_relative" value="true"/>
  <param name="imu0_remove_gravitational_acceleration" value="true"/>
  <param name="print_diagnostics" value="true"/>

  <!-- ======== ADVANCED PARAMETERS ======== -->

  <param name="odom0_queue_size" value="10"/>
  <param name="imu0_queue_size" value="10"/>

  <!-- If your data is subject to outliers, use these threshold settings, expressed as Mahalanobis distances, to control
       how far away from the current vehicle state a sensor measurement is permitted to be. Each defaults to
       numeric_limits<double>::max() if ...
(more)
edit retag flag offensive close merge delete

1 Answer

Sort by ยป oldest newest most voted
1

answered 2016-05-05 12:18:22 -0500

b2256 gravatar image

Found error. Note ekf launch differential and relative params inadvertently modified. Revised back to false and wacked results go away. Noob mistake.

edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

2 followers

Stats

Asked: 2016-04-26 09:31:51 -0500

Seen: 417 times

Last updated: May 05 '16