Having issues with opencv/dnn with caffe model
I am trying to make use of openpose example in opencv using caffe model and opencv/dnn.hpp
tutorial I have been following - https://www.learnopencv.com/deep-lear...
we require 2 files for the network as said in the tutorial : 1 - prototxt - https://github.com/spmallick/learnope... 2 - caffemodel - http://posefs1.perception.cs.cmu.edu/...
I downloaded the files and made this node for pose estimation
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/dnn/dnn.hpp>
#include <sensor_msgs/image_encodings.h>
#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <iostream>
using namespace std;
using namespace cv;
using namespace cv::dnn;
static const std::string OPENCV_WINDOW = "Image window";
#define COCO
#ifdef COCO
const int POSE_PAIRS[17][2] =
{
{1,2}, {1,5}, {2,3},
{3,4}, {5,6}, {6,7},
{1,8}, {8,9}, {9,10},
{1,11}, {11,12}, {12,13},
{1,0},{0,14},
{14,16}, {0,15}, {15,17}
};
static const std::string protoFile = "pose/coco/pose_deploy_linevec.prototxt";
static const std::string weightsFile = "pose/coco/pose_iter_440000.caffemodel";
int nPoints = 18;
#endif
class ImageConverter
{
ros::NodeHandle nh_;
image_transport::ImageTransport it_;
image_transport::Subscriber image_sub_;
public:
ImageConverter()
: it_(nh_)
{
image_sub_ = it_.subscribe("/zed/rgb/image_raw_color", 1, &ImageConverter::imageCb, this);
}
~ImageConverter()
{
cv::destroyWindow(OPENCV_WINDOW);
}
void imageCb(const sensor_msgs::ImageConstPtr& msg)
{
cv_bridge::CvImagePtr cv_ptr;
try
{
cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::BGR8);
}
catch (cv_bridge::Exception& e)
{
ROS_ERROR("cv_bridge exception: %s", e.what());
return;
}
if (cv_ptr->image.rows > 60 && cv_ptr->image.cols > 60)
detect_people(cv_ptr->image);
cv::waitKey(3);
}
void detect_people(cv::Mat msg)
{
int inWidth = msg.cols;
int inHeight = msg.rows;
float thresh = 0.1;
cv::Mat frame;
msg.copyTo(frame);
cv::Mat frameCopy = frame.clone();
int frameWidth = frame.cols;
int frameHeight = frame.rows;
cv::dnn::Net net = cv::dnn::readNetFromCaffe("pose_deploy_linevec.prototxt" ,"pose_iter_440000.caffemodel");
cv::Mat inpBlob = blobFromImage(frame, 1.0/255, cv::Size(inWidth, inHeight), cv::Scalar(0, 0, 0), false, false);
net.setInput(inpBlob);
cv::Mat output = net.forward();
int H = output.size[2];
int W = output.size[3];
std::vector<cv::Point> points(nPoints);
for (int n=0; n < nPoints; n++)
{
// Probability map of corresponding body's part.
cv::Mat probMap(H, W, CV_32F, output.ptr(0,n));
cv::Point2f p(-1,-1);
cv::Point maxLoc;
double prob;
cv::minMaxLoc(probMap, 0, &prob, 0, &maxLoc);
if (prob > thresh)
{
p = maxLoc;
p.x *= (float)frameWidth / W ;
p.y *= (float)frameHeight / H ;
cv::circle(frameCopy, cv::Point((int)p.x, (int)p.y), 8, Scalar(0,255,255), -1);
cv::putText(frameCopy, cv::format("%d", n), cv::Point((int)p.x, (int)p.y), cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(0, 0, 255), 2);
}
points[n] = p;
}
int nPairs = sizeof(POSE_PAIRS)/sizeof(POSE_PAIRS[0]);
for (int n = 0; n < nPairs; n++)
{
// lookup 2 connected body/hand parts
Point2f partA = points[POSE_PAIRS[n][0]];
Point2f partB = points[POSE_PAIRS[n][1]];
if (partA.x<=0 || partA.y<=0 || partB.x<=0 || partB.y<=0)
continue;
cv::line(frame, partA, partB, cv::Scalar(0,255,255), 8 ...
I would say this is first and foremost an opencv issue, not so much a ROS one.
OpenCV has its own support forums which may be more suitable for your question.