ROS Resources: Documentation | Support | Discussion Forum | Index | Service Status | ros @ Robotics Stack Exchange |
1 | initial version |
it is robot_pose_ekf/odom because it is filtered by extended kalman filter. Amcl and gmapping uses the frame of odometry which you can set as a parameter of robot_pose_ekf
2 | No.2 Revision |
it is robot_pose_ekf/odom because it is filtered by extended kalman filter. Amcl and gmapping uses the frame of odometry which you can set as a parameter of robot_pose_ekf
to be more specific here is the robot_pose_ekf.launch file from my robot
<launch>
<node pkg="robot_pose_ekf" type="robot_pose_ekf" name="robot_pose_ekf">
<param name="output_frame" value="odom_combined"/>
<param name="freq" value="20.0"/> <!-- 10 'du 20 yaptim -->
<param name="sensor_timeout" value="1.0"/>
<param name="odom_used" value="true"/>
<param name="imu_used" value="false"/>
<param name="vo_used" value="false"/>
<param name="debug" value="false"/>
<param name="self_diagnose" value="false"/>
</node>
</launch>
i set the output_frame as odom_combined as turtlebot does. you may set this to odom as you wish
3 | No.3 Revision |
it is robot_pose_ekf/odom because it is filtered by extended kalman filter. Amcl and gmapping uses the frame of odometry which you can set as a parameter of robot_pose_ekf
to be more specific here is the robot_pose_ekf.launch file from my robot
<launch>
<node pkg="robot_pose_ekf" type="robot_pose_ekf" name="robot_pose_ekf">
<param name="output_frame" value="odom_combined"/>
<param name="freq" value="20.0"/> <!-- 10 'du 20 yaptim -->
<param name="sensor_timeout" value="1.0"/>
<param name="odom_used" value="true"/>
<param name="imu_used" value="false"/>
<param name="vo_used" value="false"/>
<param name="debug" value="false"/>
<param name="self_diagnose" value="false"/>
</node>
</launch>
i set the output_frame as odom_combined as turtlebot does. you may set this to odom as you wishwish.
here the provided tf transforms
odom_combined → base_footprint
in my robot
4 | No.4 Revision |
it is robot_pose_ekf/odom because it is filtered by extended kalman filter. Amcl and gmapping uses the frame of odometry which you can set as a parameter of robot_pose_ekf
to be more specific here is the robot_pose_ekf.launch file from my robot
<launch>
<node pkg="robot_pose_ekf" type="robot_pose_ekf" name="robot_pose_ekf">
<param name="output_frame" value="odom_combined"/>
<param name="freq" value="20.0"/> <!-- 10 'du 20 yaptim -->
<param name="sensor_timeout" value="1.0"/>
<param name="odom_used" value="true"/>
<param name="imu_used" value="false"/>
<param name="vo_used" value="false"/>
<param name="debug" value="false"/>
<param name="self_diagnose" value="false"/>
</node>
</launch>
i set the output_frame as to odom_combined as turtlebot does. you may set this to odom as you wish.
here the provided tf transforms
odom_combined → base_footprint
in my robot