ROS Resources: Documentation | Support | Discussion Forum | Index | Service Status | ros @ Robotics Stack Exchange |
1 | initial version |
Hi,
I'm the creator of that demo, so I should be able to help you out. I haven't uploaded the code to our public svn because it could do with a little updating to clean up the code, split off sections into functions, etc. It also doesn't compile under electric because it was developed under cturtle and I haven't updated it.
This demo was mostly created for me to learn PCL, so there are lots of ways to improve the code. For example, using kd trees instead of brute force collision detection, etc.
That said, here's the source code if you want to take a look.
-Brian
//find_floor.cpp
//Author: Brian Satzinger (bsatzinger@gmail.com)
//Demonstration of automated floor finding & reorientation through
//planar segmentation, with a collision detection function.
//Publishes several ros topics with intermediate data for debugging
//and illustrative purposes.
/*
Copyright (c) 2011, Brian Satzinger
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the UCSB Robotics Lab nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//ROS Includes
#include <ros/ros.h>
#include <geometry_msgs/Polygon.h>
#include <geometry_msgs/Point32.h>
//RVIZ ROS API Includes
#include <visualization_msgs/Marker.h>
#include <visualization_msgs/MarkerArray.h>
//TF Includes
#include <tf/transform_broadcaster.h>
//PCL Includes
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/features/normal_3d.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl_visualization/pcl_visualizer.h>
#include <pcl/filters/project_inliers.h>
#include <pcl/surface/convex_hull.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl_tf/transforms.h>
#include <pcl_ros/subscriber.h>
//Other includes
#include <boost/thread/mutex.hpp>
#include <iostream>
#include <stdio.h>
#include <math.h>
using namespace std;
//Typedefs
typedef pcl::PointXYZRGB PointT;
typedef pcl::PointCloud<PointT> CloudT;
typedef pcl_visualization::PointCloudColorHandler<sensor_msgs::PointCloud2> ColorHandler;
typedef ColorHandler::Ptr ColorHandlerPtr;
typedef ColorHandler::ConstPtr ColorHandlerConstPtr;
//Some constants to be experimented with
#define Z_LIMIT 4.5 //Maximum allowable distance from the kinect
#define LEAF 0.02 //Size of the voxel grid for initial downsampling
#define LEAF_COARSE 0.15 //Size of the voxel grid for coarse downsampling
#define QUORUM 2000 //Number of points it takes to be considered a plane
#define PLANE_DIST_THRESH ( 0.13 ) //Ground plane distance threshold
//A global variable for passing point cloud data from the callback to the main thread
sensor_msgs::PointCloud2ConstPtr cloud_, cloud_old_;
boost::mutex m;
//Callback for receiving cloud data
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& cloud)
{
ROS_INFO ("PointCloud with %d data points (%s), stamp %f, and frame %s.", cloud->width * cloud->height, pcl::getFieldsList (*cloud).c_str (), cloud->header.stamp.toSec (), cloud->header.frame_id.c_str ());
m.lock ();
cloud_ = cloud;
m.unlock ();
}
//Check if any points in obs collide with a sphere of radius r centered at pos
//Used for collision detection with a spherical collision model
int in_collision (const CloudT& obs, const tf::Vector3& pos, double r)
{
int n = obs.points.size();
for (int i = 0; i < n; i++)
{
PointT obs_pt = obs.points[i];
tf::Vector3 obs3 = tf::Vector3(obs_pt.x, obs_pt.y, obs_pt.z);
//Compute the distance between the position of the robot and the point
tf::Vector3 delta = obs3 - pos;
double dist = delta.length();
if (dist < r)
{
return 1;
}
}
return 0;
}
//main: Detect the ground plane, determine the Kinect's relative position to the ground
//and detect obstacles to a robot traveling on the ground plane
int main (int argc, char** argv)
{
//**************************************
//INITIALIZE ROS:
//**************************************
ros::init (argc, argv, "floor_finder");
ros::NodeHandle nh;
//ROS Publishers. These are primarily used for debugging and illustration,
//and can be removed if this code is used for a specific purpose and they
//are not specifically needed.
ros::Publisher npl_pub = nh.advertise<sensor_msgs::PointCloud2>("nonplane_cloud", 1);
ros::Publisher pl_pub = nh.advertise<sensor_msgs::PointCloud2>("plane_cloud", 1);
ros::Publisher hull_pub = nh.advertise<sensor_msgs::PointCloud2>("hull_cloud", 1);
ros::Publisher align_pub = nh.advertise<sensor_msgs::PointCloud2>("aligned_cloud",1);
ros::Publisher coarse_pub = nh.advertise<sensor_msgs::PointCloud2>("coarse_outliers",1);
ros::Publisher coarse_trans_pub = nh.advertise<sensor_msgs::PointCloud2>("coarse_worldref",1);
ros::Publisher marker_pub = nh.advertise<visualization_msgs::Marker>("visualization_marker", 10);
// Get the queue size from the command line
int queue_size = 1;
printf("Using a queue size of %d\n", queue_size);
// Create a ROS subscriber to the kinect data
ros::Subscriber sub = nh.subscribe ("/kinect/depth/points2", queue_size, cloud_cb);
//**************************************
//DECLARE VARIABLES:
//**************************************
pcl::PCDReader reader;
pcl::PassThrough<PointT> pass;
pcl::NormalEstimation<PointT, pcl::Normal> ne;
pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg;
pcl::PCDWriter writer;
pcl::ExtractIndices<PointT> extract;
pcl::ExtractIndices<pcl::Normal> extract_normals;
pcl::KdTreeANN<PointT>::Ptr tree = boost::make_shared<pcl::KdTreeANN<PointT> > ();
// Datasets
pcl::PointCloud<PointT> full_cloud, cloud_depth, cloud_fine, plane_inliers, plane_inliers_proj, floor_conv_hull, plane_outliers, plane_outliers_coarse;
pcl::PointCloud<pcl::Normal> cloud_normals;
pcl::ModelCoefficients coefficients_plane, coefficients_cylinder;
pcl::PointIndices indx_inliers_plane;
//**************************************
//MAIN LOOP:
//**************************************
while (nh.ok ())
{
//Wait for a new pointcloud to arrive
ros::spinOnce ();
ros::Duration (0.001).sleep ();
// If no cloud received yet, continue
if (!cloud_)
continue;
if (cloud_ == cloud_old_)
continue;
m.lock ();
{
pcl::fromROSMsg (*cloud_, full_cloud);
}
m.unlock();
//**************************************
//INITIAL FILTERING:
//**************************************
// Build a passthrough filter to remove points which are too far away
pass.setInputCloud (boost::make_shared<pcl::PointCloud<PointT> > (full_cloud));
pass.setFilterFieldName ("z");
pass.setFilterLimits (0, Z_LIMIT);
pass.filter (cloud_depth);
//Voxel grid downsampling
pcl::VoxelGrid<PointT> sor;
sor.setInputCloud (boost::make_shared<CloudT> (cloud_depth));
sor.setLeafSize(LEAF, LEAF, LEAF);
sor.filter(cloud_fine);
cout << "Voxel Grid Downsampling: " << cloud_fine.points.size() << " points remain\n";
// Estimate point normals
ne.setSearchMethod (tree);
ne.setInputCloud (boost::make_shared<pcl::PointCloud<PointT> >(cloud_fine));
ne.setKSearch (50);
ne.compute (cloud_normals);
//**************************************
//PLANE DETECTION:
//**************************************
// Create the segmentation object for the planar model and set all the parameters
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_NORMAL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setNormalDistanceWeight (0.1);
seg.setMaxIterations (100);
seg.setDistanceThreshold (PLANE_DIST_THRESH);
seg.setInputCloud (boost::make_shared<pcl::PointCloud<PointT> >(cloud_fine));
seg.setInputNormals (boost::make_shared<pcl::PointCloud<pcl::Normal> >(cloud_normals));
// Obtain the plane inliers and coefficients
seg.segment (indx_inliers_plane, coefficients_plane);
cout << "Plane coefficients: " << coefficients_plane << std::endl;
cout << "Extracting plane inliers...\n";
// Extract the planar inliers from the input cloud
extract.setInputCloud (boost::make_shared<pcl::PointCloud<PointT> > (cloud_fine));
extract.setIndices (boost::make_shared<pcl::PointIndices> (indx_inliers_plane));
extract.setNegative (false);
extract.filter (plane_inliers);
cout << "Plane contains " << (int)plane_inliers.points.size() << "\n";
//Project the planar cloud to lie exactly on the plane model
pcl::ProjectInliers<PointT> proj;
proj.setModelType(pcl::SACMODEL_NORMAL_PLANE);
proj.setInputCloud(boost::make_shared<CloudT> (plane_inliers));
proj.setModelCoefficients(boost::make_shared<pcl::ModelCoefficients> (coefficients_plane));
proj.filter(plane_inliers_proj);
//Construct a convex hull for the projection
CloudT cloud_hull;
pcl::ConvexHull2D<PointT, PointT> chull;
chull.setInputCloud(boost::make_shared<CloudT> (plane_inliers_proj));
chull.reconstruct(floor_conv_hull);
//Visualize the plane outline in RVIZ
visualization_msgs::Marker line_strip;
line_strip.header.frame_id = "kinect_ground";
line_strip.header.stamp = ros::Time::now();
line_strip.ns = "points_and_lines";
line_strip.action = visualization_msgs::Marker::ADD;
line_strip.pose.orientation.w = 1.0;
line_strip.id = 0;
line_strip.type = visualization_msgs::Marker::LINE_STRIP;
line_strip.scale.x = 0.01; //the x component sets the line width
line_strip.color.a = 1.0f;
line_strip.color.r = 1.0f;
line_strip.lifetime = ros::Duration(2.0f);
for (unsigned int i = 0; i < floor_conv_hull.points.size(); i++)
{
geometry_msgs::Point p;
p.x = floor_conv_hull.points[i].x;
p.y = floor_conv_hull.points[i].y;
p.z = floor_conv_hull.points[i].z;
line_strip.points.push_back(p);
}
marker_pub.publish(line_strip);
//extract the plane outliers
extract.setNegative (true);
extract.filter (plane_outliers);
extract_normals.setNegative (true);
extract_normals.setInputCloud (boost::make_shared<pcl::PointCloud<pcl::Normal> > (cloud_normals));
extract_normals.setIndices (boost::make_shared<pcl::PointIndices> (indx_inliers_plane));
extract_normals.filter (cloud_normals);
//Publish a ROS message with the planar segments included
sensor_msgs::PointCloud2 scene;
pcl::toROSMsg(plane_inliers, scene);
pl_pub.publish(scene);
//Publish a ROS message with non-planar segments
sensor_msgs::PointCloud2 scene_non;
pcl::toROSMsg(plane_outliers, scene_non);
scene_non.header.frame_id = "kinect_ground";
npl_pub.publish(scene_non);
//**************************************
//TF COMPUTATION:
//**************************************
//Define the TF
static tf::TransformBroadcaster br;
tf::Transform transform;
transform.setOrigin(tf::Vector3(0.0,0.0,0.0));
//Calculate the z-alignment rotation
tf::Vector3 plane_norm = tf::Vector3(coefficients_plane.values[0],coefficients_plane.values[1],coefficients_plane.values[2]);
tf::Vector3 desired_orientation = tf::Vector3(0.0,0.0,-1.0); //align to -z axis
plane_norm = plane_norm.normalize();
desired_orientation = desired_orientation.normalize();
double rot_ang = acos(plane_norm.dot(desired_orientation));
tf::Vector3 rot_axis = plane_norm.cross(desired_orientation);
tf::Quaternion q = tf::Quaternion(rot_axis,rot_ang);
//Calculate the y-alignment rotation
plane_norm.setZ(0);
plane_norm = plane_norm.normalize();
tf::Vector3 x_axis = tf::Vector3(0.0,1.0,0.0);
rot_ang = acos(plane_norm.dot(x_axis));
rot_axis = plane_norm.cross(x_axis);
rot_axis.normalize();
tf::Quaternion q2 = tf::Quaternion(rot_axis,rot_ang);
//Define the transform
transform.setRotation(q2 * q);
transform.setOrigin(tf::Vector3(0,0,-1.0 * coefficients_plane.values[3]));
tf::StampedTransform trans = tf::StampedTransform(transform, ros::Time::now(), "world", "kinect_ground");
br.sendTransform(trans);
//Publish a kinect_ground aligned pointcloud (for debugging)
sensor_msgs::PointCloud2 aligned2;
pcl::toROSMsg(full_cloud, aligned2);
aligned2.header.frame_id = "kinect_ground";
align_pub.publish(aligned2);
//**************************************
//COARSE COLLISION GRID:
//**************************************
pcl::VoxelGrid<PointT> sor2;
sor2.setInputCloud (boost::make_shared<CloudT> (plane_outliers));
sor2.setLeafSize(LEAF_COARSE, LEAF_COARSE, LEAF_COARSE);
sor2.filter(plane_outliers_coarse);
cout << "Coarse Voxel Grid Downsampling: " << plane_outliers_coarse.points.size() << " points remain\n";
double reduction_percent = 100.0 - 100.0 * ((float) plane_outliers_coarse.points.size()) / ((float) plane_outliers.points.size());
cout << reduction_percent << " percent reduction in collision points\n";
//Publish the coarse voxel grid (mainly for debugging)
sensor_msgs::PointCloud2 coarse2;
pcl::toROSMsg(plane_outliers_coarse, coarse2);
coarse2.header.frame_id="kinect_ground";
coarse_pub.publish(coarse2);
sensor_msgs::PointCloud2 coarse2tf;
pcl::transformPointCloud("/world", trans, coarse2, coarse2tf);
coarse_trans_pub.publish(coarse2tf);
pcl::fromROSMsg(coarse2tf, plane_outliers_coarse);
//**************************************
//VISUALIZE COLLISIONS:
//**************************************
//Publish a blue marker on each point not in collision
visualization_msgs::Marker marker;
marker.header.frame_id = "/world";
marker.header.stamp = ros::Time();
marker.ns = "collision_ns";
marker.id = 0;
marker.type = visualization_msgs::Marker::POINTS;
marker.lifetime = ros::Duration(2.0f);
marker.color.a = 0.5;
marker.color.r = 0.0;
marker.color.g = 0.0;
marker.color.b = 1.0;
marker.action = visualization_msgs::Marker::ADD;
marker.scale.x = marker.scale.y = marker.scale.z = 0.05;
//Test points in a grid
for (double x = -3.0; x < 3.0; x = x + 0.05)
{
for (double y = 0.0; y < 5.0; y = y + 0.05)
{
geometry_msgs::Point pt;
pt.x = x;
pt.y = y;
pt.z = 0;
//Add the point if it is not in collision
if ( in_collision (plane_outliers_coarse, tf::Vector3(x,y,0), 0.3) == 0 )
{
marker.points.push_back(pt);
}
}
}
//Publish the markers
marker_pub.publish(marker);
}
return (0);
}