A student asked me the other day the following rather homework-looking question: Given a natural number , how many solutions does the equation

have for and natural numbers?

The question has a very easy answer: Simply notice that and that any like this determines a unique such that is a solution. So, there are solutions if is even (as can be any of ), and there are solutions if is odd.

I didn’t tell the student what the answer is, but I asked what he had tried so far. Among what he showed me there was a piece of paper in which somebody else had scribbled

which caught my interest, and is the reason for this posting.

I don’t think the student had seen the connection between this product of two series, let’s call it , and his question. If we denote by the number of solutions to the equation, the series is the generating function of the sequence , i.e.,

To see this, notice that the coefficient of in is precisely the number of ways we can write as a product of a term from the first series and a term from the second one, i.e., it is the number of solutions with and natural numbers to the equation or, equivalently, . That is to say, the coefficient of in is exactly .

This gives us a purely algebraic (analytic?) way of solving the question, even if there is no understanding of how to approach it from a combinatorial point of view.

Both series on the product that makes up are geometric series, so we have

that of course coincides with the formula we obtained earlier by combinatorial considerations.

The question the student had is a very simple example of a problem about integer partitions, a beautiful area of mathematics that I hope I am not misconstruing by thinking of as a branch of combinatorial number theory. The technique of generating functions is a very useful and powerful combinatorial tool that I have always found quite nice although, granted, its use is a bit of an overkill for the question at hand. At the same time, this technique provides us with a (standard) method for solving any problem of the same kind: For fixed natural numbers , find for each the number of tuples of natural numbers such that

One can then go further to study the much subtler partition function and its relatives.

(And I still don’t know the name of the student, who didn’t bother to introduce himself, and I have no idea who suggested to him to look at to begin with.)

Well, I got the partial solution finally, here is the question that I tried to solve by the equation x + 2y = n, x,y,n > 0

Let n be a positive integer. Harry’s school year has n school days. Harry has budget of exactly $n for buying exactly one snack per day at school. There are only two types of snacks available: M&M for $1. 00 per packet, or a pair of bananas at $2.00 per pair. The following restrictions must apply to Harry.

(1) Harry must spend all $n on snacks during the school year.

(2) Harry does not have to buy a snack each school day.

At the end of the school year, Harry must report how many times he bought M&M, and how many times he bought bananas. How many different reports are possible?

Anyway, thank you for your posting 🙂 It helps me to understand the solution better.

Georgii: Let me start with some brief remarks. In a series of three papers: a. Wacław Sierpiński, "Contribution à la théorie des séries divergentes", Comp. Rend. Soc. Sci. Varsovie 3 (1910) 89–93 (in Polish). b. Wacław Sierpiński, "Remarque sur la théorème de Riemann relatif aux séries semi-convergentes", Prac. Mat. Fiz. XXI (1910) 17–20 […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is that the existence of a nonprincipal ultrafilter does not imply the existence of a Vitali set. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${ […]

Marginalia to a theorem of Silver (see also this link) by Keith I. Devlin and R. B. Jensen, 1975. A humble title and yet, undoubtedly, one of the most important papers of all time in set theory.

Given a positive integer $a$, the Ramsey number $R(a)$ is the least $n$ such that whenever the edges of the complete graph $K_n$ are colored using only two colors, we necessarily have a copy of $K_a$ with all its edges of the same color. For example, $R(3)= 6$, which is usually stated by saying that in a party of 6 people, necessarily there are 3 that know e […]

Equality is part of the background (first-order) logic, so it is included, but there is no need to mention it. The situation is the same in many other theories. If you want to work in a language without equality, on the other hand, then this is mentioned explicitly. It is true that from extensionality (and logical axioms), one can prove that two sets are equ […]

$L$ has such a nice canonical structure that one can use it to define a global well-ordering. That is, there is a formula $\phi(u,v)$ that (provably in $\mathsf{ZF}$) well-orders all of $L$, so that its restriction to any specific set $A$ in $L$ is a set well-ordering of $A$. The well-ordering $\varphi$ you are asking about can be obtained as the restriction […]

Gödel sentences are by construction $\Pi^0_1$ statements, that is, they have the form "for all $n$ ...", where ... is a recursive statement (think "a statement that a computer can decide"). For instance, the typical Gödel sentence for a system $T$ coming from the second incompleteness theorem says that "for all $n$ that code a proof […]

When I first saw the question, I remembered there was a proof on MO using Ramsey theory, but couldn't remember how the argument went, so I came up with the following, that I first posted as a comment: A cute proof using Schur's theorem: Fix $a$ in your semigroup $S$, and color $n$ and $m$ with the same color whenever $a^n=a^m$. By Schur's theo […]

It depends on what you are doing. I assume by lower level you really mean high level, or general, or 2-digit class. In that case, 54 is general topology, 26 is real functions, 03 is mathematical logic and foundations. "Point-set topology" most likely refers to the stuff in 54, or to the theory of Baire functions, as in 26A21, or to descriptive set […]

I’m the student asked the question 😉

Well, I got the partial solution finally, here is the question that I tried to solve by the equation x + 2y = n, x,y,n > 0

Let n be a positive integer. Harry’s school year has n school days. Harry has budget of exactly $n for buying exactly one snack per day at school. There are only two types of snacks available: M&M for $1. 00 per packet, or a pair of bananas at $2.00 per pair. The following restrictions must apply to Harry.

(1) Harry must spend all $n on snacks during the school year.

(2) Harry does not have to buy a snack each school day.

At the end of the school year, Harry must report how many times he bought M&M, and how many times he bought bananas. How many different reports are possible?

Anyway, thank you for your posting 🙂 It helps me to understand the solution better.

Hi Eliot,

I’m glad this helped. Marion mentioned to me the `M&Ms problem’ the other day, I figured this was the same question without distractions.