robot_localization not publishing
HI, i am trying to fuse my sensors and rtabmap visual odom topics together. However, robot_localization doesnt output anything. The diagnostic topic also doesnt tells me anything. Here is a link to my rosbag
launching rtabmap : rosrun rtabmapros rgbdodometry rgb/image:=/stereoinertialpublisher/left/imagerect depth/image:=/stereoinertialpublisher/stereo/depth rgb/camerainfo:=/stereoinertialpublisher/left/camerainfo _frameid:=oak-d_frame
launching robotlocalization: roslaunch robotlocalization ekflocal.launch vizveh:=false rviz:=false
Here is my yaml
frequency: 30 twodmode: true transformtimeoffset: 0.0 transformtimeout: 0.02 printdiagnostics: true debug: false debugoutfile: /home/catkinws/src/debug.txt publishtf: false publishacceleration: false mapframe: map # Defaults to "map" if unspecified odomframe: odom # Defaults to "odom" if unspecified baselinkframe: rrobot # Defaults to "baselink" if unspecified worldframe: odom # Defaults to the value of odom_frame if unspecified
odom0: /odometry/filtered odom0config: [false, false, false, # x y z true, false, false, # roll pitch yaw false, true, false, # vx vy vz false, false, true, # vroll vpitch vyaw false, false, false] # ax ay az odom0queuesize: 10 odom0nodelay: false odom0differential: false odom0relative: false
odom1: /odomrgbdimage odom1_config: [false, false, false, # x y z false, false, false, # roll pitch yaw true, true, false, # vx vy vz false, false, true, # vroll vpitch vyaw false, false, false] # ax ay az
odom1queuesize: 10 odom1nodelay: false odom1differential: false odom1_relative: false
usecontrol: false stampedcontrol: false controltimeout: 0.2 controlconfig: [true, false, false, false, false, true] processnoisecovariance: [0.05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.015]
[ADVANCED] This represents the initial value for the state estimate error covariance matrix. Setting a diagonal
value (variance) to a large value will result in rapid convergence for initial measurements of the variable in
question. Users should take care not to use large values for variables that will not be measured directly. The values
are ordered as x, y, z, roll, pitch, yaw, vx, vy, vz, vroll, vpitch, vyaw, ax, ay, az. Defaults to the matrix below
if unspecified.
initialestimatecovariance: [1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Asked by an9999 on 2023-04-02 13:33:50 UTC
Comments